Plantwide Control Course

Lecture 1: Introduction

by: Mehdi Panahi

Department of Chemical Engineering
Ferdowsi University of Mashhad

Plantwide Control Course, Ferdowsi University of Mashhad, M. Panahi
Chemical Process Operation

Key Production Objectives

Safety
Stability
Economics
- Production rate
- Product quality
- Product Specs

Production objectives can vary due to changes in the market or unavoidable disturbances during operation like
- Ambient conditions
- Raw material quality
- Sensor noise
- Equipment characteristics

Plantwide Control Course, Ferdowsi University of Mashhad, M. Panahi
Chemical Process Operation

- Interconnected units
- Material and energy recycle
- Manipulating a process stream disturbs the connected unit(s)

Key control system design questions:

- What process variables (CVs) should be controlled? We will study self-optimizing in detail
- What manipulation handles (MVs) to use, pairing
- Degree of tightness of control
Course Objectives

- To be able to choose right controlled variables to control
- Right pairing
- Design plant-wide control structure for complete chemical plan
Example: Post-combustion CO2 Capture Plant

Plantwide Control Course, Ferdowsi University of Mashhad, M. Panahi
Example: Post-combustion CO2 Capture Plant

Flue Gas from Power Plant

Absorber

Cooler

To Stack

Water Make up

V-7

V-8

V-9

Pump 1

Pump 2

Surge Tank

Amine Makeup

Stripper

Reboiler

Rich/Lean Exchanger

CO2

Condenser

V-2

V-3

V-4

V-5

V-6

V-10

Cooling Water in

Cooling Water out

Cooling Water in

Cooling Water out

Steam

Condensate

n=1

n=15

n=20

Plantwide Control Course, Ferdowsi University of Mashhad, M. Panahi
Example: Post-combustion CO2 Capture Plant

Plantwide Control Course, Ferdowsi University of Mashhad, M. Panahi
Performance of the proposed control structure in region I alternative 1 in pairings

- Flowrate of fluegas: disturbance
 - 5%
 - 10%
 - 15%
 - 20%
 - 25%
 +25%

- Temperature of tray no. 16 in the stripper, y33
 - Time (min)
 - C
 - 90
 - 95
 - 100
 - 105
 - 110
 - 115
 - 120

- Reboiler duty, u2
 - Time (min)
 - KW
 - 1050
 - 1100
 - 1150
 - 1200
 - 1250
 - 1300

- V-8 to set recycle lean amine flowrate, u1
 - Time (min)
 - Valve opening%
 - 0
 - 50
 - 60
 - 70
 - 80
 - 90
 - 100

Plantwide Control Course, Ferdowsi University of Mashhad, M. Panahi
Modified alternative 2
Modified alternative 2: Move the throughput manipulator

Plantwide Control Course, Ferdowsi University of Mashhad, M. Panahi
Performance of the modified alt.2

(a) Flowrate of flues: disturbance

(b) Reboiler duty, u2

(c) Temperature of tray no.16 in the stripper, y2

(d) Duty of Pump 1

(e) V-8 to set recycle lean amine flowrate, u1

(f) CO2 recovery in absorber, y1

Plantwide Control Course, Ferdowsi University of Mashhad, M. Panahi
Course Organization

• Systematic Plantwide Control Procedure of Skogestad
 \(\triangleright\) Top-down analysis including of Self-optimizing
 \(\triangleright\) Bottom-up including of controls of:
 \(\triangleright\) Distillation systems
 \(\triangleright\) Reactors
 \(\triangleright\) Heat exchangers
 \(\triangleright\) Miscellaneous systems

• Plantwide procedure of Nitin Kaistha, maximization throughput
• Plantwide procedure of William Luyben
• Examples and issues

Plantwide Control Course, Ferdowsi University of Mashhad, M. Panahi